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LINK GROUPS 

BY JOHN MILNOR 

(Received March 3, 1952) 

(Revised October 16, 1953) 

1. Summary 

By a link homotopy is meant a deformation of one link onto another, during 
which each component of the link is allowed to cross itself, but such that no 
two components are allowed to intersect. The purpose of this paper is to study 
links under the relation of homotopy. The fundamental tool in this study will 
be the link group. The link group of a link is a factor group of the fundamental 
group of its complement, which is invariant under homotopy. 

To each conjugate class of elements in the link group of a link with n com- 
ponents there corresponds a link with n + 1 components which is defined up 
to homotopy. A study of this group therefore, not only gives a method for dis- 
tinguishing between links which are not homotopic, but also gives a procedure 
for obtaining a (possibly redundant) list of all homotopy classes of links with a 
given number of components. By means of the link group, an effective procedure 
is given for deciding whether or not a given link is trivial-that is homotopic 
to a collection of "unlinked" circles. A complete homotopy classification is 
given for links with three components in euclidean space, and for links such 
that every proper sublink is trivial. 

I am indebted to R. H. Fox for assistance in the preparation of this paper. 

2. The basic theorems 

Let M be an open 3-dimensional manifold which possesses a regular triangula- 
tion. Let C be a circle. By an n-link L will be meant an ordered collec- 
tion (11, - - - , In) of maps 1i: C -> M, where the images 11(C), . - , l1(C) are to 
be disjoint. A link will be called proper if the maps 11, , In are all homeo- 
morphisms. 

Two links L and L' will be called homotopic if there exist homotopies hi, 
between the maps 1i and the maps 1 so that the sets h1t(C), , hnt(C) are 
disjoint for each value of t. Clearly the relation of homotopy is reflexive, sym- 
metric and transitive. 

Denote the image 11(C) u ... u ln(C) of a link L by I L . For each proper 
link L let G(L) denote the fundamental group of the complement M - I L I . 
Let Lt = (11, ... , li-, kli+, ... , ln) denote the (n - 1)-sublink obtained by 
removing the ith component. To each such sublink there corresponds a natural 
inclusion homomorphism G(L) -> G(Lt). Denote the kernel of this homomorphism 
by Ai(L), and denote the commutator subgroup of Ai by [Ai]. Since the [Ai] 
are normal subgroups of G(L), their product E = [A1][A2] ... [An] is also a 
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178 JOHN MILNOR 

normal subgroup. By the link group p3(L) will be meant the factor group 
G(L)/E(L). 

For example for a link with one component the subgroup E of G is just the 
commutator subgroup [A] of the kernel of the natural homomorphism of G into 
the fundamental group of M. Thus in this case 9 = G/E = G/[A]. 

(REMARK. The following alternative definition of the link group is more intui- 
tive, although less practical for computation. Consider the set of all closed loops 
in M - I L I with base point xo. A multiplication between loops is defined in 
the usual manner. Define two loops f and g to be equivalent, if the (n + 1)-link 
(1l, .** In fg'-) is homotopic to a link (11, *, 1', x0), for which the last com- 
ponent consists of a single point. The equivalence classes of loops now build a 
group. It will follow from Corollary 1 to Theorem 3 that this group is isomorphic 
to 9). 

For the proof that 9 is invariant under homotopy, three lemmas will be needed. 
A homeomorphism of a one-dimensional complex C into M will be called polygonal 
if, for some subdivision of C, each simplex is mapped linearly into a simplex of M. 

LEMMA 1. Any map f of a one-dimensional complex C into M can be approxi- 
mated arbitrarily closely by a polygonal homeomorphism of C into M, which is 
homotopic to f. 

Thus in particular, every link can be approximated arbitrarily closely by a 
proper link. The proof is easily given. 

The next lemma is closely related to the Lefschetz duality theorem, and is 
proved in the same manner. 

LEMMA 2. Let U be an orientable n-dimensional manifold which possesses a 
regular triangulation; and let U oo denote the one point compactification of U. 
Let X be a subcomplex of U, and let V be any closed subset which is disjoint from X. 
Then the singular homology group Hr(U V, X) is naturally isomorphic to the 
Cech-Dowker cohomology group Hn- (U- X _o, V co). 

Let K denote an arbitrarily fine simplicial complex for U and let K* denote 
the dual cell complex. Let V' be the smallest subcomplex of K* which contains 
V, and let V" be the open star neighborhood of V' with respect to K. Let X' be 
the open star neighborhood of X with respect to K*. By a standard com- 
binatorial argument it follows that Hr(U - V", X) is isomorphic to 
Hn-r(U - X' o, V' , co). Furthermore the pair (U - X' To, V' o) 
is a deformation retract of (U - X co, V' coc). 

Now pass to the limit, as the mesh of the complex K becomes arbitrarily fine. 
Since the neighborhoods V" converge to the closed set V, it follows that the 
singular group Hr(U - V, X) is the direct limit of the groups Hr(U - V", X). 
Thus in order to complete the proof it is only necessary to show that 
H n-r(U_-X , co, V , co) is the direct limit of the corresponding groups for 
the neighborhoods V'. Since the V' co are compact spaces with intersection 
V co, the Cech group H8(V coc) is the direct limit of the groups H8(V' -, o). 

I For the case n = 1, this factor group has been studied by R. H. Fox (see [2] in bibliog- 
raphy). 
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Now using the exact cohomology sequences of the pairs (U - X s, V co) 
and (U - X oc, V' co), it follows that H-r(U -X o, V o) is 
the direct limit of the groups Hf-r(U - X , co, V' co); which completes 
the proof. 

LEMMA 3. Let Y and Z be topological spaces, and let ho and h1 be homeomorphisms 
of Y into Z. A homotopy between ho and h1 induces an isomorphism between 
Hr(Z, ho(Y)) and Hr(Z, h1(Y)). 

The proof will be valid for any cohomology theory. Let Qo and Q, denote the 
mapping cylinders of ho and h1 . A natural isomorphism between Hr(Z, h,(Y)) 
and Hr(Qi, Y) will be constructed for i = 0, 1. Since a homotopy between ho 
and h1 induces a homotopy equivalence between the pairs (Qo, Y) and (Qi, Y), 
this will complete the proof. 

The mapping cylinder Qi is defined as the identification space of Y X [0, 1] - Z 
in which (y, 1) is identified with hi(y) for each y E Y. The spaces Y (= Y X [0]) 
and Z can be considered as subspaces of Qi . Let Pi denote the image of Y X [0, 11 
in Qi. The inclusion map (Z, hi(Y)) -* (Qi, Pi) is clearly a homotopy equiv- 
alence. Since hi is a homeomorphism, the inclusion map Y -> Pi is also a homotopy 
equivalence. Using the exact sequences of the pairs (Qi, Y) and (Qj , Pi) it 
follows that the inclusion map (Qi, Y) -* (Qi, Pi) induces isomorphisms of the 
cohomology groups. The maps (Z, h%(Y)) -> (Qi, Pi) -- (Qi, Y) now induce 
the required isomorphism between Hr(Z, hi(Y)) and Hr(Qi, Y); which completes 
the proof. 

THEOREM 1. If two proper links are homotopic, then their link groups are iso- 
morphic. 

It will be assumed that there is a fixed base point xo in M which is not on the 
path of the homotopy. Clearly any given homotopy can be approximated by 
one which permits such a point xo. 

CASE 1. Links with one component. 
For a link L with one component, the subgroup A/[A] of the link group G/[A] 

may be described as follows. Let U denote the universal covering space of M, 
and let V denote the inverse image of I L I in U. Then U - V is a covering 
space of M - I L I, and its fundamental group equals the subgroup A of the 
fundamental group G of M - I L I . Therefore the abelianized group A/[A] is 
isomorphic to the singular homology group H1(U - V) with integer coefficients. 

The full link group G/[A] may be described by a modification of this procedure. 
Let X denote the inverse image of xo in U, and let x' denote a base point in X. 
We will next define a homomorphism -q of G onto a certain group associated 
with the singular homology group H1(U - V, X). Each element g of G is repre- 
sented by a closed loop in M - I L I with base point xo . Such a loop is covered 
by a path in U - V which starts at x' and ends at some point x of X. This 
path represents an element -q(g) of H1(U - V, X). 

The image 71(G) clearly consists of all elements X of H1(U - V, X) such that 
the boundary of X in Ho(X) has the form x - x . A group operation in 71(G) is 
defined as follows. To each X, with 8X1- xi- x there corresponds a unique 
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covering transformation (p of U - V over M - L which carried x0 into xi. 
Define the product of two such elements by 

XlX2 = Xi + +1(X2). 

Under this group operation the map 77 becomes a homomorphism, and it is 
easily verified that the kernel of -q is [A]. Note that the group of all covering 
transformations 0 is just the fundamental group F of M. Thus -0 defines an 
isomorphism of the link group G/[A] onto a certain group 71(G) which is defined 
in terms of H1(U - V, X), together with the boundary homomorphism 
H1(U - V, X) -* Ho(X) and the operations of F on these two groups. 

By Lemma 2, H1(U - V, X) is isomorphic to the Cech-Dowker group 
H2(U -X ?o, V coc). By Lemma 3, this group is invariant under homotopies 
of V co. But a homotopy of L induces a homotopy of V co. Certainly 
the boundary homomorphism H1(U - V, X) -- Ho(X) and the operations of 
F on these two groups are also invariant under homotopies of L. Therefore 
G/[A] is invariant under homotopies of L. 

CASE 2. L has more than one component, but only the ith component is 
moved by the homotopy. 

Applying Case 1 to the link 1i in the manifold M- |L it follows that G/[Ai] 
is invariant under homotopy of li. Furthermore it is easily verified that the 
kernel Aj[Ai]/[Ai] of the natural homomorphism G(L)/[Ai(L)] -* G(L')[Ai(Lj)1 
is invariant, for each j # i. The commutator subgroup of this kernel is 

[Aj[Ai]/[Ai]] = [Aj][Aij/[Ai]. 

The product over all j = i of the groups [Aj][Al]/[Ai] is just E/[Ai]. Therefore 
the factor group 9 = G/E is invariant under homotopy of i. 

CASE 3. An arbitrary homotopy. 
First suppose that, for some subdivision 0 = to < ti < ... < tk = 1 of [0, 1], 

the homotopy ht satisfies the following two conditions: 
(1) Only one component of the link is moved during each interval [tj, tj+11. 
(2) The links hto , ht1, .-- , htk are proper. 

Then the desired isomorphism is obtained by repeated application of Case 2. 
But, with the use of Lemma 1, any homotopy can be approximated by one which 
satisfies these conditions. This completes the proof of Theorem 1. 

REMARK. The isomorphism which is obtained does not actually depend on the 
approximation which is chosen. However the proof of this assertion is somewhat 
complicated, and will not be given here. 

The meridians to a proper link L are elements of the link group of L, defined 
as follows. It will be assumed that M is an orientable manifold, and that fixed 
orientations have been chosen for M and C. 

Let p(t) be a path leading from the base point x0 to a point p(l) of lQ(C), but 
not touching L for t < 1. Choose a small neighborhood N of p(l); and form a 
closed loop in M - i L I as follows. Traverse the path p from xo to a point in 
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N; then traverse a closed loop in N which has linking number + 1 with li(C) n N 
considered as a cycle of (N, N); and return to xo along p. This defines an ele- 
ment ai of 9(L) which will be called the ith meridian of L with respect to the 
path p. Making use of the isomorphism Ai(L)/[A%] Hi(U - V) of Theorem 1, 
it is easy to see that ai is unique and well-defined for all sufficiently small neigh- 
borhoods N. 

Let ai denote the kernel of the natural homomorphism 9(L) -* 9(Lt). An 
element T3j of ?9(L') is defined as follows. Traverse the path p from xo to p(l); 
then traverse li(C) in the positive direction; and return to xo along p. This ele- 
ment T3i corresponds to a coset Ojai in ?3(L). This coset will be called the ith 

parallel of L with respect to p. 
If the path p is replaced by some other path, then the pair (ai , Ojai) is clearly 

replaced by some conjugate pair (Xai)1, XAi3X1ai). 
THEOREM 2. The isomorphism of Theorem 1 preserves the pairs (ai, 31a), . .. 

(an , na3 n) up to conjugations. 
More precisely: if the pair (i4 , ,O3(ai(L)) in ?(L) corresponds to (a' , O3,ai(L')) 

in ?3(L') under the isomorphism, and if (at' , 3'lai(L')) is a meridian and parallel 
pair in ?3(L'), then a'" = cXa>J-1 and 3'O'ai(L') = XOY>7ai(L') for some X in 
?3(L'). The proof is easily given: it is only necessary to check this assertion through 
each stage of the proof of Theorem 1. 

Nearly all of the above considerations can still be carried through if the mani- 
fold M is non-orientable. The only change is that it is no longer possible to dis- 
tinguish between ai and a-'j. 

If L is a polygonal link, then meridians can be defined not only in the link 
group, but also in the fundamental group G(L). (A closed loop in M - I L I is 
defined just as before. However in this case it represents a well-defined element 
of G(L).) 

LEMMA 4. Let L be a polygonal link, and let ai e G(L) be a meridian to the ith 

component. Then the normal subgroup generated by as is Ai. For an arbitrary 
proper link L, the normal subgroup generated by a meridian as e ?3(L) is aj. 

Let N be a smooth tubular neighborhood of lQ(C). The group G(L) can be 
persented as the free product of the fundamental groups of N - li(C) and 
M - N - i L [, with relations corresponding to the boundary of N. If the 
component li is removed, the only change is that the relation at = 1 is added in 
the group of N - l(C). Therefore the kernel of the homomorphism G(L) -* G(Lt) 
is the normal subgroup generated by ai. The corresponding assertion for the 
link group of an arbitrary link follows immediately, by passing to a polygonal 
approximation. 

THEOREM 3. Let L be a proper n-link, and let f and f' be closed loops in M -I L 
with base point xo . If f and f' represent conjugate elements of the link group ?3(L), 
then the (n + 1)-links (L, f) and (L, f') are homotopic. 

It is sufficient to consider the special case in which f and f' represent the 
same element of S. For if hfh-1 is any loop conjugate to f, then the links (L, f) 
and (L, hfh1) are clearly homotopic. 
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For any closed loop f, and any representative g of [A], we will show that the 
(n + 1)-link (L, fg) is homotopic to (L, f). It will follow by induction that 
(L, fga ... gn) is homotopic to (L, f), where g9 ... gn represents any element of 
E(L). Thus loops which represent the same element of 9 give rise to homotopic 
(n + 1)-links. This will complete the proof. 

Approximate the maps 11, ,In by polygonal maps 1, 1' , lX. This can 
be done so that the images 11(C), * , I' (C) and f(C) g(C) remain disjoint, 
and so that g represents an element of [Ai(L')]. 

Let a, E G(L') be a meridian to the it', component of L'. By Lemma 4 every 
element of Ai(L') can be written as a product of conjugates of as and aT1. In 
other words every element of Ai(L') can be written as a product of meridians 
and their inverses. Therefore the representative g of [Ai(L')] is homotopic to a 
loop (h1 h2hi h-1) ... (hr-1hrh-11 h71), where the loops h1, , hr represent 
meridians to the ith component of L', corresponding to paths pi, I, Pr or 
the inverses of such meridians. By Lemma 1 it may be assumed that the paths 
pj are polygonal, and that the images pj([O, 1]) and pk([O, 1]), j = k, have only 
the base point in common. 

Choose a 3-cell neighborhood of the set pi([O, 1]) - P2([O, 1]). In this neighbor- 
hood the configuration shown in Figure 1 will occur. (The heavy lines represent 
portions of l(C)). Deforming h1h2hi1hi1 and l'(C) as indicated in Figure 2, the 
loop hih2h'lhj1 can be reduced to a point. It follows by induction that 
(L', fhlh2hjlhj1 ... hrlhrhlLihj1) is homotopic to (L', f). The proof is now com- 
pleted by combining the homotopies 

(L, fg) - (L', fg) - (L', fhl h2 ... h-1) - (L', f) - (L, f). 

A link will be called i-trivial if, for some homotopic link (1, *, I), the set 
l,(C) consists of a single point. Combining Theorems 1, 2 and 3, the following 
result is obtained. 

COROLLARY1. Let L =(l, , In) be a proper link. A closed loop f in M L- 

represents the identity element of f(L) if and only if the link (11, * n , In f) is 
(n + 1)-trivial. 

This can also be stated as follows. 
COROLLARY 2. A link is i-trivial if and only if its ith parallel f3cai is equal to Gti . 
The proofs are evident. 

3. An example 

In order to give a concrete geometrical illustration of the preceding theory, 
the following theorem will be proved. Results in this section will not be used 
in the following sections. 

A link is trivial if it is homotopic to some (1l, * * , l') where the components 
11(C) X 

' * *X(C) consist of single points. By a knot is meant a proper 1-link. 
THEOREM 4. If a polygonal knot in euclidean space is replaced by a collection 

of parallel knots lying within a tubular neighborhood of the original, and having 
linking numbers zero, then the resulting link is trivial. 

It is first necessary to make some remarks about the lower central series of a 
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group. For any group G, the first lower central subgroup G1 is the group itself. 
The nth lower central subgroup Gn is generated by all commutators aba-1 b-1 with 
a E G and b E Gnl- . 

/4h2 \~~ 

r,9A 

Sy2a. r7 2 L. 

Pi' 2c. Ft-2d 

7 1~/ 

LEMMA 5. If L is a proper n-link in euclidean space, then the (n + 1)-st lower 
central subgroup Sgn+ of q(L) contains only the identity element. 

This is clear for the case n = 0. (The fundamental group of euclidean space 
contains only the identity element.) If it has been proved for the case n - 1, 

2 Hence 9(L) can be considered as a factor group of G(L)/G,+, (L). This suggests some 
connection with the work of K. Chen [11 who has shown that, for a polygonal link L, the 
factor groups G(L)/G,(L) are invariants of the isotopy class of L for arbitrary values of the 
integer r. 
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then it follows that the nth lower central subgroup of 9(L') / 9(L)/ai(L) con- 
tains only the identity element, for each i. In other words the subgroup Si of 
9(L) is contained in each ad. By the definition of the link group, the subgroups 
ai are commutative. Since the groups a1, I , an generate 9, it follows that 
elements of gn commute with all elements of A, which proves that 9"+i = 1. 

Let T denote the fundamental group of the complement M - N of the tubular 
neighborhood. By the Alexander duality theorem, the abelianized group TIT2 g 
H1(M - N) is infinite cyclic. It follows that T, = T2 for r _ 2. For if ao E T 
generates T/ T2, then every element of T can be written in the form aj b with 
b E T2. Modulo the subgroup T3, all elements of T commute with elements of 
T2 . Since powers of ao commute with each other, it follows that T/T3 is com- 
mutative. But this implies that T3 D T2, hence T2 = T3 = T4= 

34- 

F;Y 3 Fij 

Consider the natural homomorphisms T -3 G(L) >-* 9(L). The subgroup 
T2 = T.+, of T is mapped into the subgroup pnal 

- 1 of S. This means that a 
closed loop in M - N represents the identity element of 9(L) whenever it repre- 
sents the identity element of T/T2 H1(M - N): that is whenever it has 
linking number zero with N. 

The parallel jij to any component of L can clearly be represented by a loop 
in M - N having linking number zero with N. This means that Aide equals 
ai , and hence that the link L is i-trivial. Since this is true for all values of i, 
it follows easily that L is trivial. 

To conclude this section, a counter-example to a possible generalization of 
Theorem 4 will be given. The 2-link illustrated in Figure 3 is clearly trivial. If 
each component of this link is replaced by two parallel components, having 
linking numbers zero, then the resulting 4-link, illustrated in Figure 4, is not 
trivial. This can be proved by the techniques of Section 4. (Compare also Sec- 
tion 5.) 

4. Trivial links 

Consider the following two problems. 
(I) To give a general procedure for deciding whether any given link is trivial. 
(II) To solve the word problem for the link groups of all trivial links. 
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It follows from Corollary 1 that these problems are equivalent: Suppose that 
problem (I) has been solved; and Let L be any trivial proper link. Then a loop 
f in M - I L I represents the identity element of :(L) if and only if the link 
(L, f) is trivial. 

Now suppose that (II) has been solved, and suppose by induction that (I) 
has been solved for links with n - 1 components. Then a proper link (11, - - *, In) 
is trivial if and only if the sublink (11 , -, in-1) is trivial, and the loop In repre- 
sents the identity element of ?(11, - , in-1). 

It will be shown in this section that problem (II) can be solved whenever the 
word problem for the fundamental group F of M can be solved. 

For any proper link L let JG(L) denote the integral group ring of G(L). Let 
Ki(L) denote the kernel of the natural homomorphism JG(L) JG(Li). Sim- 
ilarly let XCi(L) denote the kernel of the homomorphism J9(L) J9(Lt). The 
two-sided ideals KM and 3C2 will be of particular interest. 

LEMMA 6. The natural homomorphism JG/K2 + ... + K2 __ Jj3/3C2 + 
*.. + S n is an isomorphism. 

The rings JG/K2 + ... + K2 J(S/,3C2 + * + CW2 will be denoted by 
@R(L). 

It is evidently sufficient to prove that the subset E of JG is congruent to the 
identity modulo K2 + *.. + K2 . If a and a' are elements of Ai, 
then aa'-a-a' + 1= (a- 1) (a' -1) is an element ofKi . Therefore aa' 
a + a' - 1 a'a (mod K2). This means that [As] 1 (mod KM); hence 

E = [A 1] ... [An] --1 (mod Ki + Kn) 

which completes the proof. 
Let as be a meridian to the ith component of L. An element s of J9 is an ex- 

pression of the form Eej3yj, where the ej are integers and the -yj are elements 
of S. For each such s let a' denote the product 

j ja aie iny 1 

Since all conjugates of as commute, this product is well defined. 
LEMMA 7. Every element of ti(L) can be written in the form a' with s e J9(L). 

Two such elements are equal whenever their exponents are congruent modulo the 
ideal 3Ci + (3C2 + ... + 3W2). 

By Lemma 4, every element of (ai(L) can be written as a product of conju- 
gates of ai and a-'. Hence every element of Es can be written in the form a' 
with s e Jo. 

Every element of the ideal 3Qj can be written as a sum of expressions A-y 
with d- y (mod aj). For such an exponent we have 

a e a= iayfa- y', fOaif f = 1 (mod a3). 

Hence as e Gj for all s e 3Cj. 
For the special case j i we have 

a.= 0a'i(0e)cfy ' = y (07)aia = 1, 
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since both -3'y and ai belong to the commutative group Gi. Therefore a = 1 
for all s e XiX. 

Every element of 3W2 can be written as a sum of expressions (3- y)s with 
A-y (mod aj) and s e3Cj. For such an exponent we have 

a(-i)s = ga (-1 )aS-l = 0(0-1,y)aiaisf = 1, 

since both a" and f-13 belong to Qj . Therefore a" = 1 for all s e 32 It follows 
that a, = as whenever 

s _ s' (mod 3C + (3C2 + + 3C2)). 

Note that the factor ring Jg/3Ci + (3C2 + * + 3C2) is naturally isomorphic 
to (R(Lt). Hence the expression aX is defined for elements a of (R(Lt). 

THEOREM 5. For an i-trivial link L, every element of Gi(L) can be expressed in one 
and only one way as a~ with a e (R(Lt). 

The group 3(L) and the ring R(LV) will not be changed if L is replaced by some 
homotopic link. Therefore, without loss of generality, we may assume that L 
is a polygonal link and that its ith component is a small unknotted circle. Let N 
be a small euclidean neighborhood of this circle, and let G' be the subgroup of 
G(L) generated by all closed loops in M - I L I - N. Then G(L) is the free 
product of G' with the infinite cyclic group generated by ai . (The group G' is 
naturally isomorphic to G(Lt)). 

Following R. H. Fox [3] we introduce the concept of a derivation in the ring 
JG(L). Define the homomorphism -q: JG -- J by 

-q(Zejgj) = Eej. 

A derivation in JG is a map D: JG JG such that 

(1) D(a + b) = D(a) + D(b) 

(2) D(ab) = D(a)7(b) + aD(b). 

In particular the derivation Di is defined by the further conditions 

(3) Di(g) = 0 for g EG' 

(4) Di(ai) = 1. 

Since G(L) is a free product, it is easily shown that there is a unique function 
DT which satisfies these conditions. 

It will next be proved that Di(KM) C KM for j 5 i, and that Di(K2) C Ki. 
For each j 5 i, a jth meridian aj to L can be chosen in the subgroup G' of G. 
It follows from Lemma 4 that every element of Kj is a sum of terms bkjc, where 
kj = aj - 1. For such a term we have 

Di(bkjc) = Di(b)(1(kjc) + bDi(kj)'q(c) + bkj Di(c) = bkj Di(c) e Kj, 

since 7(k%) = 0 and Di(kj) = 0. Therefore Di(Kj) C Kj for j 54 i . 
For any b, c e Kj we have -(c) = 0, hence 

Di(bc) = Di(b)-q(c) + bDi(c) = bDi(c). 
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For j 54 i, since both b and Di(c) are elements of Kj, this proves that Di(K) c 
K>2. For j = i we still have b e Ki, which proves that Di(K) C Ki . Since Di 
is an additive homomorphism, it follows that Di induces a homomorphism of 
6R(L) = JG/K2 + ... + K2 into (R(Lt) ; JG/Ki + (K2 + *+ K2). 

Define the exponential homomorphism c: (R(L') - > ei(L) by E(o) = . We 
must prove that the function E is one-one. Let X: ai(L) -> GI(L) be the function 
which sends each -y e Gi(L) into -y - 1 reduced modulo 3C2 + * + 3CW2. From 
the fact that (a_ ) - 1) (a e 3&,it follows that a' - 1 - 1 + 
ai -1 (mod3C+ +3) hence X - ( + a') = XG(a) + X (o'). 

It will now be proved that the composition c X E of the maps 

(R(L ) -E+ i(L) X> ((L) --- (R(Li) 

is the identity map of 6R(Lt). Since c X E is an additive homomorphism, it is 
sufficient to verify that 6 X c(-y) = -y for an element -y of (R(LV) which come from 
q(Li). Such an element -y is represented by an element g of G'. The element 
X (cY) = -aiy - 1 of (R(L) is then represented by gaigq1- 1 in JG(L), and 
the element c X E(-y) of (R(LV) by Di(gaig-F- 1) in JG(L). But 

Di(gaig-1 - 1) = Di(g)-q(aig-1) + gDi(ai)-q(g'1) + gaiDi(g-') = g, 

since Di(g) = Di(g-1) = 0 and Di(ai) = -q(gq') = 1. This implies that 5 X (-y) = 
-y, hence that c X E is the identity map of 6R(L). It follows that the function E 
is one-one. Since E maps 6R(Lt) onto (Gi(L) by Lemma 7, this completes the proof 
of Theorem 5. 

Since 5 X - is an isomorphism and since E is onto, it follows also that X is one- 
one. This fact will be used to prove the following theorem. 

THEOREM 6. If the link L is trivial, then the composition of the natural homo- 
morphisms q(L) Jq(L) -> 61(L) is an isomorphism of 9(L) into 6R(L). 

For the case n = 0 this asserts that the natural map F -+ JF is an isomorphism 
which is clear. Suppose that the case n - 1 has been proved. Consider the mul- 
tiplicative homomorphisms 

q(L) R i(L) 

1j 
{ 
Tt 

q(Li) P (R(Li); 

and let y be any element of q(L) with p(y) = 1. By the induction hypothesis, 
p' is an isomorphism. Since p'r(y) = r'p(y) = 1, this implies that r(-y) = 1, hence 
that -y e ei(L). Therefore the function X(-y) = p(-y) - 1 is defined. Since X is 
one-one and since p(-y) - 1 = 0, this implies that y = 1, which completes the 
proof. 

Theorems 5 and 6 suggest the importance of obtaining further information 
about the ring (R(L). We will next study this ring for the special case of a trivial 
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link. It is evidently sufficient to consider a link L for which each component is a 
small unknotted circle, so that G(L) can be presented as a free product. 

Suppose that G(L) is the free product of F with the infinite cyclic groups 
generated by a,, . *, an. Let ki be the element ai - 1 of JG. By a canonical 
word of JG will be meant a product of the form spokj1splkcj,2e ...kljp1ppo, p _ 0, 
where the (pi are arbitrary elements of F and the ji are distinct integers between 
1 and n. By a canonical sentence of JG will be meant a sum or difference of any 
number of canonical words. 

THEOREM 7. Under these conditions, each element of 6= JG/K1 + * n* + K2 
is represented by a unique canonical sentence in JG. 

Let 8 be the ring whose elements are canonical sentences of JG, with addition 
defined in the ordinary way, but with multiplication defined by the rule 

0O if hi = ji, for some i, i' 
(Spo kh, SPi ... khP (P) (do kj * ... kjq Iq) = f 

(po kh, S(P ... khPQp 1,t'o)kkj *1 * kjq Alq 
otherwise. 

Using the distributive laws, this multiplication for words extends to a unique 
multiplication for arbitrary elements of S. The associative law for multiplication 
is clear. 

A homomorphism I: 8 -* G is obtained by mapping each canonical word 
(pokej ... *p into the actual product spokjl *. *pp reduced modulo K2 + * + K 2 
In order to veryfy that v is a homomorphism, it is only necessary to note that the 
identity 

(5pokhl *. * .p)( o0k j * * *q)-q 0 (modK1 + *K + K2) 

holds in JG whenever hi = ji, for some i, i'. Theorem 7 is clearly equivalent to 
the proposition that v is an isomorphism of 8 onto 61. 

A homomorphism 0: JG -- 8 is defined by mapping each element sp of F into 
the canonical word so, and mapping each meridian ai into the canonical sentence 
1 + 1kil. Since G is a free product, and since the element 1 + lkil of 8 has an 
inverse 1 - l1kil, this homomorphism is well defined. It clearly maps JG onto S. 
The composition t0 of these two maps is the natural map JG -i 61. (It is sufficient 
to verify this for elements of F and for the meridians at). Therefore v maps 8 
onto 61; and the kernel of v is the image O(K2 + * + K2) of the kernel of I0. 

Every element of the ideal Ki is a sum of elements g(at - l)g'. It follows by 
direct computation that every element of O(Ki) is a sum of canonical words 
which contain ki . Since the product of two such words is zero by the definition 
of multiplication in 8, this means that O(KM) = 0. It follows that the kernel 
O(K2 + + K2) of v equals zero, which completes the proof of Theorem 7. 

The preceding theorems give two separate solutions to the word problem for 
the link group of a trivial link, and therefore to the triviality problem for links. 
Using Theorems 6 and 7, each element of 9(L) corresponds to a unique element 
of (R(L) and therefore to a unique canonical sentence in JG(L). Two elements in 
9 are equal if and only if their canonical sentences are equal. 
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A more efficient solution in practice is the following. Let Ln be a trivial n-link, 
and let Lr be the sublink formed by the first r components of L. Then 9 (LrA) 
can be considered as a subgroup of 9 (Lr). Furthermore each element of 9 (Lr) 
can be expressed uniquely as the product of an element of 9(LrO) with an ele- 
ment of 1r(Lr). By Theorem 5, each element of 1r(Lr) can be expressed uniquely 
in the form a ?r-l with ar-1 e (R(Lri). It follows by induction that each element 
of ?(Ln) can be expressed uniquely in the form 

~'O 0 I n- 1 (pala2 an 

with so e F, ao- (R(Lo) = JF, olE 61(L1), X, on-,i (R(L1_1). Since the word prob- 
lems for these rings are solved by Theorem 7, this gives a second solution to the 
word problem for G(Ln). 

To conclude this section, the following theorem will be proved. 
THEOREM 8. If 9(L) is isomorphic to the group q(L) of a trivial link, in an iso- 

morphism which preserves the conjugate classes corresponding to meridians, then 
L is trivial. 

Let (ai, ,Oi3li) be a meridian and parallel pair in 9(L), and let (ai, ?idi) be 
the pair in 93(L) which correspond under the isomorphism. Then ai is a meridian 
in 9(L) (but fi3i is not necessarily a parallel). We may assume that the link L 
is polygonal so that lQ(C) has a smooth tubular neighborhood. If this neighbor- 
hood is orientable, then the identity a.i1 _,iaiO 1ai 1 holds. This implies 
that aq&-' = 1, hence by Theorem 5, that T3i represents the identity element of 
Gi(LD). It follows by Theorem 6 that $i represents the identity element of g(Lt), 
hence that Aii = di . This implies that 3i(i = (ai, hence that L is i-trivial. 
Since this is true for all values of i, it follows that L is trivial. 

If the neighborhood were non-orientable, then the identity adi+l - 1 would 
hold. This would imply that a = 1, hence that - 7i represented the identity 
element of 6(Li). Since this is impossible, the proof is complete. 

5. Almost trivial links 

Let L be an n-link in euclidean space such that every proper sublink is trivial. 
Such links will be called almost trivial. The nth parallel an(in in 9(L) corresponds to 
an element O3 of 9(L'). Since the link L'-' is trivial, it follows that 3' Ea a,-(Ln); 
hence O3 can be written in the form a'-, with a- (R(Ln-'s). Since L' is trivial 
for i < n - 1, it follows that every word of the canonical sentence correspond- 
ing to a contains the factor ki . Therefore a can be written uniquely in the form 

a- = ,(i1 n-2 n- n)kil ...kin-2 

where the summation extends over all permutations i. .. in2 of the integers 
1, 2,**, n-2. 

The (n - 2)! integers U(il . . . in-2 , n-1 n) are homotopy invariants of L: 
By Theorem 2 it is sufficient to prove that they are not altered if each ai and 
each ai3t6 is replaced by a conjugate. For i = n this is true since O3n is an element 
of the center of the group 9(Ln). For i < n it can be verified by a simple compu- 
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tation. On the other hand the homotopy class of L is completely specified by 
these integersu. A homotopic link can be constructed from any trivial (n - 1)- 
link by adjoining the loop a' 0- a ukil ... ki2 . Thus we have obtained a 
complete set of homotopy invariants for almost trivial links in euclidean space. 

Every link with two components is almost trivial. The single invariant ,u(12) 
is clearly the linking number: hence the linking number is a complete homotopy 
invariant for 2-links. A link with three components is almost trivial if each pair 
of components has linking number zero. For such links we again obtain a single 
invariant ,u(1, 23). The case y = 1 turns out to be the familiar link illustrated in 
Figure 5. Other values of /u may be obtained by traversing one component of 
this link ,u times. The case y = 3 is illustrated in Figure 6. For links with four 
components we obtain two invariants. For example the link of Figure 4 has in- 

23 3 

Fil 5s Fiy i, 

1 2 3 n -2 
fiq 7 

variants /u(12, 34) = ,u(21, 34) = 1. As a final example, Figure 7 illustrates an 
n-link with invariants 

y (12... n-2, n-i n) = 1, 
(i... in-2, n-1 n) = 0 for all other permutations of 1, , n - 2. 

The behavior of the invariants u under simple transformations of the link will 
now be discussed. If the orientation of one component of L is reversed, then each 
invariant is multiplied by (- 1). (Hence if the orientations of two components 
are reversed, then the resulting link is homotopic to the original). If the orienta- 
tion of euclidean space is reversed, then each invariant is multiplied by (-_1)n1* 

In order to study the behavior of the invariants under permutation of the com- 
ponents of L, it is convenient to put the preceding discussion in the following 
more symmetrical form. For any two integers r # s the parallel 3' e ,(L8) can 
be expressed in the form s ar8, where the element 
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(rs = Z,'(il ... *i2X r s)ki, ... ki.-2 

of cR(L78) is a complete invariant for L. We must now find the relations between 
the invariants 7rs for different values of r and s. 

If i3: = el( jY7'1) then it can be shown by a simple geometric argument that 
3. = fl(zy7'a~ei-yj). The additive homomorphism he jj -> ieyj72' of Jq on itself 
induces an additive homomorphism w: 61 -* 61. It follows that 

(1) so8,r = (ars). 

To find the relationship between 0ro, and at,8 it is necessary to solve the equa- 
tion /3 = a'" = a"tS. Consider the homomorphisms 

61(Lt's) Et at(Ls) X a( 32> a L(Lt8s) 

of Theorem 5. From the identities 3t'Xzt(o7,,) = at, and -t(at~s) = Cr(ar,.) we 
obtain 

(2) Oa,8 = 8tXEr(0r,s). 

In order to make specific computations, it is necessary to know the effects of 
the additive homomorphisms c, 8r , and XEr on canonical words of 61. These are 
given as follows 

(3) w(kil * ki,) = (-1)mkim *** ki, 

(4) br(ki, ki,) = gki. kiilje if im= r 
t0otherwise. 

The function Xsr can be defined inductively by the rules 

xr(M) = kr 
and 

(5) XEr(kil ki2 ... kim) = kil r - Tkil 
where 

T = Xtr(ki2 .. kim) 

The composition t XEr can now be described by the rule 

(6) bit Xr(kil ... kim) = -kil ... ki- X or(kip+, ... kim) 
where 

iv = t. 

Some simple examples will illustrate these formulas. For the case n = 2 the 
invariant 712 = ,.(12) is an integer. Therefore ,4(21) = w(,4(12)) = ,u(12). Thus 
the linking number is not changed if the components are interchanged. 

For n = 3 the invariant 023 is of the form jtk1. Therefore 032 = (jk1) = -k 
and 

0T13 = 81XE2(iukj) = bl(/.tklk2 - jk2kj) = k2 
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Thus the invariant y = y (1, 23) is skew-symmetric under permutations of the 
components. 

For n = 4 the invariant -34 has the form ,.klk2 + 'k2ki, 
hence 

043 = (0a34) = ,y'k 1k2 + ,yk2k1 

and 

024 = 62 X3(034) --kl k3,-'k1 k3 + lt'k3ik. 

Thus the permutations (34) and (12) replace the invariants (,., ,.') by (u', ju); 
while the permutation (23) replaces (,., ,.') by (-y - j', y'). This behavior can 
also be described by the following symmetry relations: 

u (i4 i3 , i2 i1) = u (il i2 , i3 i4) = u (i4 il , i2 i3) 

u (il i2 , i3 i4) + YU(i3 il , i2 i4) + ,u (i2 i3 , il i4) = 0. 

The complete set of symmetry relations for arbitrary values of n is given by 
the rules 

(7) ,u (il i2 . . . in_2 2 in-1 in = ,u (in il i2 . . *.in_3 2 in-2 in-1) 

(8) y.(ii ... ivr ji . . . jf.-v2s) = (-1)n-Z,.t(hi ... hn_2 r s), 

where the summation is extended over all sets h1 ... hn_2 of integers formed by 
intermeshing i .. i2 in that order with jn-v-2 . . . j2j1 in that order. (For exam- 
ple 

.u(lr 23s) = .u(132rs) + ,u(312rs) + ,u(321rs)). 

These relations are obtained by manipulation of the formulas (1) through (6). 
However the details are too involved to give here. 

REMARK. The preceding methods can also be used to define certain "self link- 
ing numbers", which are not invariant under homotopy. Let L be a trivial poly- 
gonal link, and let L' be the link obtained by replacing each component of L by 
a collection of parallel components having linking numbers zero (compare Section 
3). Suppose that L' is almost trivial. Then the invariants ,u of L' may be con- 
sidered as describing the self linking of L. For example the link of Figure 3 has 
the self linking invariant ,u(I 1, 22) = + 1. 

6. Arbitrary links in euclidean space 

The link group of an n-link in euclidean space has the presentation 

(al, , an/aiwiaY'wi' = 1, ... anwnajwTl = 1 E 1) 

where ai is a meridian to the ith component, and where wi is a word in al, , an 

which represents the corresponding ith parallel i(ii. The symbol "E = 1" de- 
notes the set of relations which specify that conjugates of each ai commute. 

It is evidently sufficient to prove this for the special case of a polygonal link. 
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We will start with the Wirtinger presentation3 of the fundamental group G(L). 
This presentation is in terms of generators ai; i = 1, * , n; j = 1, ,ri 
corresponding to the components of the projection of L on a plane, and relations 

(1) a, =wiJ ai wi 

(2) ax = a' Wij,r, 

corresponding to the crossings of the projection. The following set of relations 
is clearly equivalent: 

(1') a2+l = wij wiLY- ... wj ai wij ..* wi,j 
1 -1 -1 -1 1 (2') ax Wi,riWi,ri_1 ... wj laiwij ... wiWi i . 

It is natural to try taking the relations (1') as definitions of the a j > 1. 
The only difficulty which can occur is that the word wi,1... wj may contain 
aj+1 as a factor. But in the link group 9(L), such factors may be cancelled with- 
out altering the relation (1'). It follows by an obvious double induction that all 
of the ai can be defined in terms of the a'. Furthermore the relations of type 
(1') are completely exhausted during this process. The relations (2') can be put 
in the form 

ai Wia'Wi = 1, 

where as = a' and Wi = WiJ ... Wi,ri . Since the word wi = Wil ... 
Wi,ri clearly 

represents the ith parallel f3s (ai, this completes the proof. 
For example if L is a 2-link with linking number ju, then the parallels are repre- 

sented by 0, = a2 and 2 = a'; hence 9(L) has the presentation 

(al , a2/ala2aia2 a a2a2 aiM = E = 1). 
For a trivial 2-link L', every element of G(L') can be put in the canonical form 
a!2+, where h, i, j are arbitrary integers. For the link L, the additional rela- 
tions ala2al a2 = a2ala2 ai = 1 introduces the single relation kd = 0 into 
this canonical form. (This means that the commutator subgroup of q(L) is a 
cyclic group of order i 1.) 

A 3-link may be specified by choosing a conjugate class of elements in the link 
group of an arbitrary 2-link. An element O'3 of this conjugate class has the canoni- 
cal form a a2 , where j is only defined modulo the linking number pi (12). The 
integers h and i are clearly equal to pz(13) and pz(23). The effect of conjugating 
/33 by a, or a2 is to replace the integer j by j + i or j - h. Hence an arbitrary 
3-link is specified by giving the three linking numbers together with the number 
j = ,(123) which need only be defined modulo the greatest common divisor 
A = (h, i, jt(12)) = (/.z(13), jt(23), pz(12)). On the other hand the residue class of 
pz(123) modulo A is not changed if each meridian and parallel is replaced by a 
conjugate. Therefore the three integers jz(12), /.i(13), ,p(23) together with the 
residue class of pz(123) mod A give a complete homotopy invariant for 3-links. 

I See for example [41 page 44. 
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For a given set of three linking numbers, the number of distinct links which oc- 
cur is equal to A, unless A = 0 in which case an infinite number of distinct links 
occur. For example for the linking numbers 0, 2, 4 there are two possible links. 
The case ,u(123) -0 (mod 2) is illustrated in Figure 8; the case ,u(123) = 1 
(mod 2) in Figure 9. The three linking numbers form a complete invariant by 
themselves only if they are relatively prime. 

The procedures which have been used above to classify special types of links 
can be generalized to give a very rough description for arbitrary links in euclidean 
space. The general n-link can be built up as follows. Start with any proper loop 
11, and adjoin a loop 12 = a'P12). Then adjoin 13 = a" l3)aI(23)+a(l"23)k. Continuing 
by induction, for each i < n it is necessary to adjoin a loop 1 = a... a"-'1, 
where Tj = Ziy (hi ... hr, ji)khl ... khr; the summation being extended over all 
ordered collections hi ... h, of integers between 1 and j - 1. (To make this con- 
struction precise it would be necessary to adopt some convention as to how the 

Fa7 8 Ej<qFi 

meridians are selected at each stage). Thus in order to specify an n-link it is 
sufficient to specify an integer ,.(ji) for each 2-sublink; an integer ju(h, ji) for 
each 3-sublink; and in general (m - 2)! integers j.(hi.... hm_2 , ji) for each of the 

(n) sublinks with m components. 

These integers Mu are not invariants of the link. However let A denote the great- 
est common divisor of all integers ju(hi ... hm-2 , ji) with m < n. Then it can be 
proved that the residue classes ju(hi ... h,2, n-I n) modulo A are actually 
homotopy invariants. Thus we have constructed (n - 2)! invariants for L, as 
well as similar invariants for all sublinks of L. Unfortunately these invariants 
are not strong enough to specify the homotopy class of L. It is to be hoped that 
some refinement of the above procedures will yield a complete homotopy classi- 
fication of links in euclidean space. But since the present results are not too con- 
clusive, and since the proofs are somewhat involved, further details will not be 
given. 
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7. Arbitrary manifolds 

One rather interesting question has not been touched on so far. To each open 
3-manifold there has been associated the following structure: To each conjugate 
class of elements in the fundamental group F there corresponds the link group 
9(11) together with the preferred class of elements (a,, f13,1) and the natural 
homomorphism 9 -- F. To each conjugate class of elements in each group 9(11) 
there corresponds a group 9(11, 12); and so on. The huge collection of groups, 
homomorphisms, and preferred elements which results is a topological invariant 
of M. To what extent is this structure determined by the usual topological in- 
variants, such as the fundamental group and linking invariants? 

An example will illustrate this problem. Let M, be the product of a 2-sphere 
with a circle, and let M2 be the product of an open 2-cell with a circle. Then M, 
and M2 both have infinite cyclic fundamental groups. Let 11 be a closed loop 
which generates the fundamental group. For the manifold M, the group q(11) 
is infinite cyclic, while for M2 it is free abelian on two generators. This behavior 
can occur even for two manifolds having the same homotopy type. In fact let 
M,, i = 1, 2, be the manifold obtained by removing a single point from Mi. 
Then the link structure of M' is identical with that of Mi . But the manifolds 
M' and M' have the same homotopy type. (Both manifolds contain, as deforma- 
tion retract, the union of a circle and a 2-sphere intersecting in a single point.) 

The preceding example suggests the following question. Is the link structure of 
a closed 3-manifold completely determined by its homotopy type? (Or more 
generally let M be a compact manifold with boundaries B. Is the link structure 
of M - B completely determined by the homotopy type of the pair (M, B)?) 
The answer to this question would be interesting whether positive or negative. 
In one case it would give a topological procedure for distinguishing between 
certain closed manifolds of the same homotopy type. In the other case it would 
give a non-abelian generalization of the duality theorems for homology groups. 
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